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An interesting question in turbulent convection is how the heat transport depends on the strength of thermal
forcing in the limit of very large thermal forcing. Kraichnan predicted �Phys. Fluids 5, 1374 �1962�� that for
fluids with low Prandtl number �Pr�, the heat transport measured by the Nusselt number �Nu� would depend on
the strength of thermal forcing measured by the Rayleigh number �Ra� as Nu�Ra1/2 with logarithmic correc-
tions at very high Ra. According to Kraichnan, the shear boundary layers play a crucial role in giving rise to
this so-called ultimate-state scaling. A similar scaling result is predicted by the Grossmann-Lohse theory �J.
Fluid Mech. 407, 27 �2000��, but with the assumption that the ultimate state is a bulk-dominated state in which
both the average kinetic and thermal dissipation rates are dominated by contributions from the bulk of the flow
with the boundary layers either broken down or playing no role in the heat transport. In this paper, we study the
dependence of Nu and the Reynolds number �Re� measuring the root-mean-squared velocity fluctuations on Ra
and Pr, for low Pr, using a shell model for homogeneous turbulent convection where buoyancy is acting
directly on most of the scales. We find that Nu�Ra1/2Pr1/2 and Re�Ra1/2Pr−1/2, which resemble the ultimate-
state scaling behavior for fluids with low Pr, and show that the presence of a drag acting on the large scales is
crucial in giving rise to such scaling. As a large-scale drag cannot exist by itself in the bulk of turbulent thermal
convection, our results indicate that if buoyancy acts on most of the scales in the bulk of turbulent convection
at very high Ra, then the ultimate state cannot be bulk dominated.
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I. INTRODUCTION

In Rayleigh-Bénard convection, fluid confined in a box is
heated from below and cooled on top. When the temperature
difference is large enough, convective motion sets in. The
flow state is characterized by the geometry of the box and
two control parameters: the Rayleigh number �Ra�, which
measures the strength of the thermal forcing and the Prandtl
number �Pr�, which is the ratio of the diffusivities of momen-
tum and heat of the fluid. The two parameters are defined by
Ra=�g�L3 / ����, and Pr=� /�, where � is the temperature
difference, L is the height of the box, g the acceleration due
to gravity, and �, �, and � are, respectively the volume ex-
pansion coefficient, kinematic viscosity, and thermal diffu-
sivity of the fluid. When Ra is sufficiently high, the convec-
tive motion becomes turbulent. Turbulent Rayleigh-Bénard
convection has been a system of great research interest �see,
for example, Refs. �1,2� for a review�. In particular, an inter-
esting question is how the heat transport of the fluid, mea-
sured by the Nusselt number �Nu�, which is defined as the
actual heat transport normalized by that when there were
only pure conduction, depends on Ra in the limit of very
high Ra. More than 40 years ago, Kraichnan predicted �3�
that in this asymptotic limit,

Nu � Ra1/2�ln Ra�−3/2Pr1/2, �1�

Re0 � Ra1/2�ln Ra�−1/2Pr−1/2 �2�

for Pr�0.15 and

Nu � Ra1/2�ln Ra�−3/2Pr−1/4, �3�

Re0 � Ra1/2�ln Ra�−1/2Pr−3/4 �4�

for 0.15�Pr�1. Here Re0=u0L / �2�� is the Reynolds num-
ber measuring the root-mean-squared horizontal velocity
fluctuations u0 at midheight L /2. Such a scaling behavior of
Nu�Ra1/2 and Re0�Ra1/2 is taken to be a signature of the
so-called ultimate state of turbulent convection. This pre-
dicted asymptotic increase of Nu as Ra1/2 is stronger than the
observed dependence of Ra� with � around 0.3 at moderate
Ra. According to Kraichnan, the convective eddies, produced
by buoyancy in the bulk of the turbulent convective flow,
generate turbulent shear boundary layers near the walls and it
is the small-scale turbulence present in these boundary layers
that dominates and enhances the heat transport. Thus in the
picture presented in Kraichnan’s work, buoyancy forces are
acting directly in the bulk and the shear boundary layers play
a crucial role in giving rise to the ultimate-state scaling.

On the other hand, the theory proposed by Grossmann and
Lohse �4–6� argued that the kinetic and thermal boundary
layers would either break down or do not contribute to the
energy and thermal dissipation and thus do not play any role
in the heat transport at very high Ra. In this bulk-dominated
state, the Grossmann-Lohse �GL� theory predicted that for
fluids with low Pr �4�

Nu � Ra1/2Pr1/2, �5�

ReLSC � Ra1/2Pr−1/2, �6�

where ReLSC=UL /� is the Reynolds number measuring the
mean large-scale circulating flow velocity U near the bound-
aries. Thus GL predicted the same scaling of Ra1/2 for Nu
and ReLSC for fluids with low Pr. The Pr-dependence pre-
dicted agrees with that of Kraichnan for Pr�0.15, but not for
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0.15�Pr�1. We emphasize that although the predicted
asymptotic dependence of Nu and ReLSC or Re0 for fluids
with low Pr are both Ra1/2 in the two theories, the assumed
roles of the boundary layers in heat transport in the
asymptotic regime are rather different.

The ultimate state of turbulent convection has been elu-
sive �7� in that definitive experimental evidence is lacking.
An increase in the Nu-Ra scaling exponent was found around
Ra=1011 by Chavanne and co-workers �8,9� in experiments
using low-temperature helium gas, and was interpreted as the
transition to the ultimate state. However, similar experiments
by Niemela et al. �10� showed that the measurements of Nu
can be well represented by Nu�Ra0.309 for Ra up to around
1017. This puzzling discrepancy in the two experiments re-
mains unresolved. The situation is further complicated by the
increasing difficulty to keep the experiments within the
Boussinesq approximation at high Ra �11�.

GL’s work led to the idea of attaining the ultimate-state
scaling at moderate Ra by an artificial destruction of the
boundary layers �12�. Modeling the bulk of turbulent
Rayleigh-Bénard convective flow by three-dimensional ho-
mogeneous turbulent convection with periodic boundary
conditions �13�, Lohse and co-workers �12,14� performed
numerical simulations for Pr ranges from 0.1 to 4. They re-
ported results that are consistent with Eqs. �5� and �6� when
ReLSC is replaced by the Reynolds number measuring the
root-mean-squared velocity fluctuations. It has been found
that �13,15� in three-dimensional homogeneous turbulent
convection, the Bolgiano length �16�, which is an estimate of
the length scale above which buoyancy forces are dominant,
is comparable to the size of the periodic box. Thus in the
numerical model studied by Lohse and co-workers, buoy-
ancy is relevant only at the largest scales. In turbulent
Rayleigh-Bénard convection, the Bolgiano length can be ex-
pressed as �17�: lB=L Nu1/2�Ra Pr�−1/4, which, therefore, de-
creases with Ra at moderate Ra. Thus there is the possibility
that buoyancy would become relevant at most scales at very
high Ra. The importance of buoyancy at most scales is also
in accord with the picture presented in Kraichnan’s work �3�
as discussed in Sec. I. Hence it is interesting to study the
scaling of heat transport using a model for homogeneous
turbulent convection in which buoyancy is acting directly on
most of the scales.

In this paper, we perform such a study using a shell model
for homogeneous turbulent convection in which buoyancy is
acting on most of the scales in some parameter range. We
investigate the scaling behavior of Nu and the Reynolds
number �Re� measuring the root-mean-squared velocity fluc-
tuations for Pr ranges from 0.1 to 2. The paper is organized
as follows. In Sec. II, we describe the shell model for homo-
geneous turbulent convection used in the present study, de-
fine Nu, Re, and Ra in the model, and derive two exact
results. We present and discuss our results of the dependence
of Nu and Re on Ra and Pr in Sec. III. In Sec. IV, we
understand why our observed result of the average energy
dissipation 	 is different from that predicted in GL. With the
relative simplicity of the shell model, we can derive analyti-
cally results for the scaling behavior of Nu and Re. We will
illustrate this in Sec. V, and also show that the theoretical
results agree well with the numerical observations. Finally,
we summarize and conclude in Sec. VI.

II. THE SHELL MODEL FOR HOMOGENEOUS
TURBULENT CONVECTION

Homogeneous turbulent convection, which represents the
bulk of turbulent Rayleigh-Bénard convection, has been pro-
posed �13� as a three-dimensional convective flow in a box,
with periodic boundary conditions, driven by a constant tem-
perature gradient along the vertical direction. In Boussinesq
approximation �18�, the equations of motion read �12�

�u�

�t
+ u� · �� u� = − �� p + ��2u� + �g
ẑ , �7�

�


�t
+ u� · �� 
 = ��2
 + �uz, �8�

with �� ·u� =0. Here, u� is the velocity, p is the pressure divided
by the density, 
=T− �T0−�z� is the deviation of temperature
T from a linear profile of constant temperature gradient of
−�, T0 is the mean temperature, and ẑ is a unit vector in the
vertical direction. A dynamical shell model for this system
has been proposed by Brandenburg �19�. Shell model is con-
structed in a discretized Fourier space with kn=k0hn, n
=0,1 , . . . ,N−1, being the wave number in the nth shell, and
h and k0 are customarily taken to be 2 and 1, respectively.
Shell models for homogeneous and isotropic turbulence have
been studied extensively and proved to be successful in re-
producing the scaling properties observed in experiments
�20�. In Brandenburg’s model, the velocity and temperature
variables un and 
n are real and satisfy the evolution equa-
tions,

dun

dt
= akn�un−1

2 − hunun+1� + bkn�unun−1 − hun+1
2 � − �kn

2un

+ �g
n, �9�

d
n

dt
= ãkn�un−1
n−1 − hun
n+1� + b̃kn�un
n−1 − hun+1
n+1�

− �kn
2
n + �un, �10�

where a, b, ã, and b̃ are positive parameters.
For this shell model, it was found �21� that when b /a is

larger than some critical value around 2, the effect of buoy-
ancy is greater than the average energy dissipation rate for
most shells. Moreover, buoyancy directly affects the statis-
tics of the system such that the scaling behavior of un and 
n
is given by the Bolgiano-Obukhov scaling �16,22� �un
�kn

−3/5, 
n�kn
−1/5� plus corrections rather than Kolmogorov

1941 scaling �23� �un�kn
−1/3, 
n�kn

−1/3� plus corrections. In
other words, buoyancy is directly acting on most of the
scales when b /a is sufficiently large. Thus we shall focus on
b /a large in the present work. It was reported in earlier stud-
ies �19� that the value of b /a controls the direction of energy
transfer. For large b /a, there is an inverse energy transfer
from small to large scales. The direction of energy transfer
can be quantified by the sign of the energy transfer rate.
Multiply Eq. �9� by un, we obtain
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dEn

dt
= Fu�kn� − Fu�kn+1� − �kn

2un
2 + �gun
n, �11�

where En=un
2 /2 is the energy in the nth shell and

Fu�kn� � kn�aun−1 + bun�un−1un �12�

is the rate of energy transfer or energy flux from �n−1�th to
nth shell. As shown in Fig. 1, �Fu�kn�� is indeed negative,
confirming that, on average, energy is transferred from large
n �small scales� to small n �large scales� when b /a is large.
As a result, a drag acting on the largest scales has to be
added to dampen the growth of energy at large scales so that
the system can achieve a statistically stationary state
�24–26�. Thus we modify Eq. �9� to

dun

dt
= akn�un−1

2 − hunun+1� + bkn�unun−1 − hun+1
2 � − �kn

2un

+ �g
n − fu0�n,0, �13�

where fu0�n,0, with f 0, is a linear drag term acting only on
the first shell n=0. Also, Eq. �11� becomes

dEn

dt
= Fu�kn� − Fu�kn+1� − �kn

2un
2 + �gun
n − fu0

2�n,0.

�14�

Next we need to define Ra, Nu, and Re in the shell model
noting that Pr is given by the usual definition of � /�. The
definitions of Ra and Re are straightforward: we only need to
replace L by 1 /k0 such that

Ra =
�g�

k0
4��

, �15�

Re =

�	
n

�un
2��1/2

�k0
. �16�

As for Nu, we recall its definition in turbulent Rayleigh-
Bénard convection as

Nu �
�uz�T − T0� − ��T/�z�A

��/L
=

�uz
�V

��/L
+ 1, �17�

where �¯�A denotes an average over �any� horizontal plane
of the convection cell and time, and �¯�V denotes an average
over the whole volume of the convection cell and time. Thus
we define

Nu =

	
n

�un
n�

��
+ 1 �18�

accordingly with �¯� denotes an average over time.
One can derive two exact results in exact analogy to those

derived in the case of turbulent Rayleigh-Bénard convection
�1�. Multiply Eq. �10� by 
n, we obtain

dSn

dt
= F
�kn� − F
�kn+1� − �kn

2
n
2 + �un
n, �19�

where Sn�
n
2 /2 is the entropy, in the Bousinessq approxima-

tion, in the nth shell and

F
�kn� � kn�ãun−1 + b̃un�
n−1
n �20�

is the rate of entropy transfer or entropy flux from �n−1�th to
nth shell. In the statistically stationary state, summing Eq.
�14� and Eq. �19� over n and using Eqs. �18� and �15� give
the exact results as

	total = �3k0
4�Nu − 1�Ra Pr−2, �21�

� = ��2Nu, �22�

where the total energy dissipation rate 	total is given by

	total = 	 + 	drag. �23�

Here 	 is the average energy dissipation rate given by

	 � �	
n

kn
2�un

2� �24�

and 	drag is the average rate of energy dissipation due to the
large-scale drag,

	drag = f�u0
2� . �25�

The average thermal dissipation rate � is defined as

� � �	
n

kn
2�
n

2� + ��2 �26�

in accordance with ������T�2�V=����
�2�V+��2 for tur-
bulent Rayleigh-Bénard convection.

III. RESULTS FOR Nu(Ra,Pr) AND Re(Ra,Pr)

We numerically integrate Eqs. �10� and �13� using fourth-
order Runge-Kutta method with an initial condition of un
=
n=0 except for a small perturbation of 
n in an interme-

diate value of n. We use a=0.01, b= ã= b̃=�g=1, �=100,
f =0.5, N=30, and vary � and � to study Nu and Re as a
function of Ra and Pr. Five values of Pr, ranging from 0.1 to
2, are studied.

0 5 10 15 20 25 30
n

-50

-40

-30

-20

-10

0

10

<
F u(k

n)>

FIG. 1. Fu�kn� for a=0.01, b= ã= b̃=�g=1, �=100, �=�
=10−8.
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The dependence of Nu on Ra for each Pr are shown in
Fig. 2. It can be seen that for each Pr, Nu scales with Ra:
Nu=A�Pr�Ra�1 with �1=0.500�0.001. The Pr dependence
of Nu is found to be A�Pr�=C1Pr�2 with �2=0.51�0.01, as
shown in Fig. 3. Thus we have

Nu = C1Ra0.500�0.001Pr0.51�0.01. �27�

Similarly, we study the dependence of Re on Ra for each
Pr. As seen in Figs. 4 and 5, Re=B�Pr�Ra�3 and B�Pr�
=C2Pr�4, where �3=0.500�0.001 and �4=−0.50�0.01.
Thus

Re = C2Ra0.500�0.001Pr−0.50�0.01. �28�

Hence our results for Nu and Re are consistent with Eqs. �5�
and �6�, when ReLSC is replaced by Re, and are also consis-
tent with the numerical results �12,14� obtained in the three-
dimensional homogeneous turbulent thermal convection in
which buoyancy only acts on the largest scales.

Moreover, we note that the Pr dependence of Nu and Re is
consistent with GL and not with Kraichnan’s result for
0.15�Pr�1 at very high Ra. The significance of Nu
��Ra Pr�1/2 and Re��Ra /Pr�1/2 is that the heat transport and
the root-mean-squared velocity fluctuations are independent
of � and �. Thus for fluids with low Pr, the scaling Nu
��Ra Pr�1/2 at very high Ra is in line with a “central dogma
in turbulence” �7� that the effects of turbulence become in-

dependent of viscosity and thermal diffusivity when Re is
sufficiently large. On the other hand, the rigorous upper
bound of Nu�0.167 Ra1/2−1 �27�, for convection in a layer
of fluid with no sidewalls, indicates �28� that the dependence
of Nu��Ra Pr�1/2 cannot hold for fluids with very large Pr.

In the derivation of Eqs. �5� and �6� in the GL theory,
there are two key intermediate results, which are the esti-
mates of 	 and � in the bulk-dominated regime for low Pr. In
the shell model, L�1 /k0, ReLSC becomes Re, and these re-
sults �c.f. Eqs. �2.11� and �2.12� of Ref. �4�� translate to

	�GL� � �3k0
4Re3, �29�

��GL� � ��2Re Pr. �30�

Next we investigate the validity of Eqs. �29� and �30�. In Fig.
6, we see that

	

�3k0
4 = C3Re2.48�0.02. �31�

Thus the dependence on Re is approximately Re5/2 instead of
Re3. On the other hand, as can be seen in Fig. 7,

�

��2 = C4�Re Pr�1.000�0.001, �32�

in good agreement with Eq. �30�.
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FIG. 2. Dependence of Nu on Ra for for Pr=0.1 �circles�, Pr
=0.25 �squares�, Pr=0.5 �triangles�, Pr=1 �stars�, and Pr=2 �dia-
monds�. The solid lines are the linear least-square fits of log10 Nu
versus log10 Ra.
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FIG. 3. The prefactor A�Pr� as a function of Pr. The solid line is
the linear least-square fit of log10 A versus log10 Pr.
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FIG. 4. Dependence of Re on Ra for different values of Pr, with
the same symbols as in Fig. 2. The solid lines are the linear least-
square fits of log10 Re versus log10 Ra.
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FIG. 5. The prefactor B�Pr� as a function of Pr. The solid line is
the linear least-square fit of log10 B versus log10 Pr.
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The observed results of Eqs. �31� and �32� together with
the exact results Eqs. �21� and �22� imply that 	total cannot be
dominated by 	 otherwise we would have Re
�Ra /Pr�2/3,
which is inconsistent with our observed dependence of Re
��Ra /Pr�1/2. Thus, 	total has to be dominated by 	drag and
that 	drag has to scale as Re3. We indeed find that 	�	total
such that

	total 
 	drag �33�

and as shown in Fig. 8,

	drag

�3k0
4 = C5Re3.00�0.01, �34�

giving consistent results as expected. Hence the observed
scaling results of Nu and Re �Eqs. �27� and �28�� depend
crucially on the presence of a large-scale drag. Such a damp-
ing mechanism at the largest scales cannot exist by itself in
the bulk of turbulent thermal convection, but could be a re-
sult from the interaction of the boundaries with the
buoyancy-generated inverse transfer of energy from small to
large scales. Our results, therefore, suggest that when buoy-
ancy is acting directly on most scales, the ultimate state, if it
exists, cannot simply be a bulk-dominated flow state. Instead
the boundaries must play a crucial role.

IV. UNDERSTANDING THE DEPENDENCE OF � ON Re

In this section, we discuss how the observed dependence
of 	 on Re approximately as Re5/2 can be understood. The
average energy dissipation rate in each shell increases with n
up to a maximum at the dissipative scale, whose shell is
denoted by the shell number nd, then decreases again. Thus 	
can be approximated as

	 
 D1�knd

2 �und

2 � , �35�

where D1 is a number of order 1. The dissipative wave num-
ber knd

can be estimated as usual as

1

knd

= D2��3

	
�1/4

�36�

with D2 being a number of order 1. Now �un
2� has good

scaling behavior in kn �19,21�, for 0�n�nd,

�un
2� 
 �u0

2�� kn

k0
�−2�

. �37�

Moreover,

	
n

�un
2� = D3�u0

2� , �38�

where D3 is a number of order 1. Putting Eqs. �35�–�38�
together, we obtain

	

�3k0
4 � Re4/�1+��. �39�

As discussed, when buoyancy is acting on most of the
scales, the scaling behavior is given by Bolgiano-Obukhov
plus corrrections, thus �
3 /5. This gives 4 / �1+��
5 /2,
as observed �see Eq. �31��. On the other hand, when buoy-
ancy is only acting on the largest scales, un obeys Kolmog-
orov 1941 scaling plus corrections �19�. In this case, �

1 /3, which leads to 4 / �1+��
3, giving the same inter-
mediate result used in the GL theory �see Eq. �29��. Such a
dependence of Re3 can be easily understood as follows.
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3 k 04 )

FIG. 6. 	 / ��3k0
4� as a function of Re for different values of Pr

with the same symbols as in Fig. 2. The solid line is the linear
least-square fit to all the data points in the log-log plot.
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FIG. 7. � / ���2� as a function of Re Pr with the same symbols as
in Fig. 2. The solid line is the linear least-square fit to all the data
points in the log-log plot.
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FIG. 8. 	drag / ��3k0
4� as a function of Re with the same symbols

as in Fig. 2. The solid line is the linear least-square fit to all the
datapoints in the log-log plot.
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When buoyancy is only acting as a driving force at the larg-
est scales, we have the usual energy cascade. From Eq. �11�,
we have

	 
 �knd

2 �und

2 � 
 �Fu�knd
�� = �Fu�k1�� 
 k0�u0

2�3/2 �40�

using Eq. �12�. Using Eq. �38�, Eq. �40� leads immediately to
	��3k0

4Re3. When buoyancy is acting on most of the scales,
there is, however, no longer a cascade of energy but only a
cascade of entropy �21�. In particular �Fu�knd

��� �Fu�k1��
and, as a result, 	 does not scale as Re3. In other words, the
result Eq. �29� estimated in the GL theory does not hold
when buoyancy is directly acting on most of the scales with
the dynamics governed by an entropy cascade.

V. ESTIMATES OF � AND �drag AND THUS Nu(Ra,Pr)
AND Re(Ra,Pr)

In the shell model, there is always an entropy cascade
with �F
�kn��
� being independent of kn in the intermediate
scales. Thus

� 
 �F
�k1�� 
 k0�u0
2�1/2�
0

2� �41�

using Eq. �20�. On the other hand, Eq. �19� implies that

F
�k1� 
 ��u0
0� 
 ��u0
2�1/2�
0

2�1/2. �42�

Comparing Eqs. �41� and �42�, we obtain

k0�
0
2�1/2 
 � . �43�

Putting Eq. �43� into Eq. �41� and using Eq. �38�, we obtain

� 

�2

k0
	

n

�un
2�1/2, �44�

which leads immediately to

� 
 ��2Re Pr �45�

as observed �see Eq. �32��.
From Eqs. �25� and �38�, we have

	drag � fk0
2�2Re2 = �3k0

4 f
�g�

Ra1/2Pr−1/2Re2. �46�

For 	drag / ��3k0
4� to depend only on Ra and Pr, we require

f = h�Ra,Pr��g� �47�

for some function h of Ra and Pr when Ra and Pr are varied.
In our numerical calculations, �g, �, and f are kept fixed
while � and � are varied to obtain different Ra and Pr. This
amounts to taking

h�Ra,Pr� = h0 �48�

for some fixed constant h0. Using Eqs. �21�, �33�, and �46�–
�48�, we obtain

Nu Ra1/2 
 h0Pr3/2Re2. �49�

On the other hand, Eqs. �22� and �45� imply

Nu 
 Re Pr. �50�

Solving Eqs. �49� and �50�, we obtain

Nu 

1

h0
Ra1/2Pr1/2, �51�

Re 

1

h0
Ra1/2Pr−1/2, �52�

which are exactly the ultimate-state scaling observed �see
Eqs. �27� and �28��. Substituting Eqs. �47�, �48�, and �52�
into Eq. �46�, one obtains

	drag 
 �3k0
4h0

2Re3, �53�

which is in good agreement with our observation �see Eq.
�34��.

We have demonstrated that the presence of a drag that
acts on the largest scales is crucial for the observation of the
ultimate-state scaling of Nu and Re. In our calculations and
derivation, we employ a linear drag of the form fu0. An
immediate question that arises is whether the scaling laws of
Nu and Re depend on the specific mathematical form of the
large-scale drag used. To answer this question, we replace
fu0�n,0 in Eq. �13� by the general form of a nonlinear drag:
fu0

m−1�n,0, where m�2 is an integer, and repeat our analysis
to obtain a new estimate of the generalized average energy
dissipation rate due to the drag, 	̃drag. Now

	̃drag = f�u0
m� 
 f�u0

2�m/2. �54�

Using Eq. �38�, we obtain

	̃drag 
 �3k0
4h0�Ra Pr−1��3−m�/2Rem �55�

where

f = h0��g��3−mk0
m−2 �56�

for some fixed value h0 as Ra and Pr are varied. Using
	total
 	̃drag, Eqs. �21� and �55�, we now have

Nu Ra�m−1�/2 
 h0Pr�m+1�/2Rem �57�

in place of Eq. �49�. Together with Eq. �50�, which remains
the same, we obtain

Nu 
 h0
−1/�m−1�Ra1/2Pr1/2, �58�

Re 
 h0
−1/�m−1�Ra1/2Pr−1/2. �59�

In other words, the scaling results of Nu��Ra Pr�1/2 and
Re��Ra /Pr�1/2 remain valid for the general large-scale drag
of fu0

m−1�n,0, for m�2.

VI. CONCLUSIONS

An interesting question in turbulent thermal convection is
how Nu and Re depend on Ra and Pr at very high Ra. Both
the theories by Kraichnan �3� and Grossmann and Lohse �4�
predicted that in this limit, Nu and Re would scale with Ra1/2

for fluids with low Pr. This kind of scaling behavior is taken
to be the signature of the ultimate state of turbulent convec-
tion. However, the two theories have rather different assump-
tions about the role of the boundary layers in heat transport.
According to Kraichnan, convective eddies produced in the
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bulk generate turbulent shear boundary layers and the turbu-
lence of which enhances heat transport. Thus we interpreted
that in the picture presented by Kraichnan, buoyancy is di-
rectly acting on all scales in the bulk and that the boundary
layers play an important role in heat transport. On the other
hand, Grossmann and Lohse argued that in the limit of high
Ra, the boundary layers would either break down or not con-
tribute to the energy and thermal dissipation and thus play no
role in heat transport. Studying numerically three-
dimensional homogeneous turbulent convection in which
buoyancy is acting only on the largest scales, Lohse and
co-workers �12,14� reported scaling behavior of Nu and Re
that is consistent with the ultimate-state scaling.

In the present work, we have studied the scaling behavior
of Nu and Re using a shell model of homogeneous turbulent
convection in which buoyancy acts on most of the scales. In
this model, buoyancy modifies the statistics of the velocity
fluctuations such that the statistics are given by Bolgiano-
Obukhov plus corrections instead of Kolmogorov 1941 plus
corrections �21�. Moreover, there is an average inverse en-
ergy transfer from small to large scales such that a large-
scale drag has to be present for the system to achieve statis-
tical stationarity. Such a large-scale drag cannot exist by
itself in the bulk of turbulent convection but could be a result
from the interaction of the inverse energy flow with the
boundaries. Thus, when buoyancy is acting directly on most
of the scales in the bulk of turbulent convection, the bound-
ary layers would play a crucial role and, as a result, the flow
cannot be bulk dominated. In this case, we have found that
the dependence of Nu and Re on Ra and Pr is again consis-
tent with the ultimate-state scaling.

Because of the relative simplicity of the shell model, we
can understand analytically the scaling behavior of Nu and
Re. The two exact results Eqs. �21� and �22� derived for the
shell model are in exact analogy to those derived for turbu-
lent Rayleigh-Bénard convection. As is clearly demonstrated
by the GL theory, to obtain the Nu and Re scaling, the whole
task is to estimate 	total and �. In the shell model, there is
always a cascade of entropy so that � is given by ��2 Re Pr
�see Eq. �45��. When buoyancy is acting on most of the
scales, 	total is dominated by 	drag. For a linear drag, 	drag is

estimated as �3k0
4�Ra /Pr�1/2Re2 �see Eq. �53��. We note that

in this case, 	 is given by �3k0
4Re5/2 �Eq. �39� with �
3 /5

when buoyancy acts on most of the scales� rather than the
prediction of �3k0

4Re3 by the GL theory. Putting these esti-
mates into the two exact results, we obtain the ultimate-state
scaling of Nu��Ra Pr�1/2 and Re��Ra /Pr�1/2. On the other
hand, when buoyancy is acting only as a driving force on the
largest scales, 	drag is negligible and 	total given by 	 as usual.
In this case, the statistics of the temperature resemble those
of a passive scalar, and 	 is given by �3k0

4Re3 �Eq. �39� with
�
1 /3 when buoyancy acts only on the largest scales�, the
usual result obtained in inertia-driven turbulence without
buoyancy, which is also the result derived in the GL theory.
In this case Eqs. �29� and �30� hold, leading to the ultimate-
state scaling as shown in the GL theory.

Hence there are two different physical scenarios that can
give rise to the ultimate-state scaling of Nu��Ra Pr�1/2 and
Re��Ra /Pr�1/2 for fluids with low Pr. In the first scenario,
which is illustrated in the present work, buoyancy is acting
directly on most of the scales of the bulk of turbulent con-
vection and, on average, energy is transferred from small to
large scales. An effective damping at the largest scales,
which can be provided by the interaction of the inverse en-
ergy transfer with the boundaries, is crucial. In the second
scenario, buoyancy is acting only as a driving force on the
largest scales, temperature in the bulk of the convective flow
is behaving similar to a passive scalar statistically, and the
boundary layers play no role in heat transport. The first sce-
nario is in accord with the physical picture presented in Kra-
ichnan’s work �3� while the second scenario is in accord with
that proposed by the GL theory �4�. The next question would
be whether or not buoyancy acts directly on most of the
scales in the bulk of turbulent Rayleigh-Bénard convection at
very high Ra, and the answer of which would help to distin-
guish which scenario is physically relevant.
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